

Silvia Hagen Sunny Connection AG

www.sunny.ch

Topics

- o Where to start
- o Guidelines
- o Recommendations
- o The Cost of a bad Address Plan
- o References

Where to start

- We have an address plan, it has worked for over 10 years, let's just copy it
- IPv6 is not that different after all, let's just go ahead and make a plan
- You don't want to miss the opportunity to create the foundation for your future network carefully!
- Use the new architecture and the unlimited address space!

Key Questions

- What has worked well with your IPv4 address plan and why?
- What would you do differently if you had the chance to redo it all? And why?
- What are the elements in your IPv4 address plan that you used for address conservation purposes?

Result

- Take the learnings from operating an IPv4 network into designing an IPv6 address plan
- Use all the rules you know:
 - Aggregation
 - Subnet Consistency
 - • • •
- Get rid of all conservation rules (host counts)
- Value ease of administration over conserving address space. This results in saving operational cost!

Global Unicast Address

Identified by the binary prefix 001 (2000::/3)

Global Routing Prefix	Subnet ID	Interface ID
--------------------------	-----------	--------------

Global Routing Prefix Value assigned to a site, Bit 0 - 2 set to 001

Subnet IDIdentifier assigned to a link within a siteInterface IDInterface Identifier, 64 bit, following formats

Address Types

- An IPv6 address can be in one of 3 categories:
 - Unicast
 - Multicast
 - Anycast
- The broadcast address is not used anymore
- Addresses have scopes (link-local, site-local, global)
- Interfaces have multiple IPv6 addresses

Interface IDs

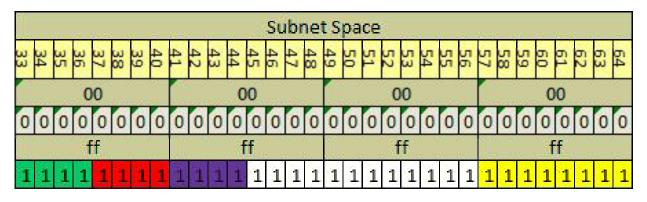
- Interface ID Interface Identifier, 64 bit, following formats
 - EUI-64 Extend MAC address to 64 bits by adding FF FE between the 3rd and 4th Byte and "locally administered bit" must be set (2nd

bit)

- Manual
- Random (Privacy)
- DHCPv6 static
- Choose traceability and ease of management (fixed IID) vs. anonymity (random IID changing in regular intervals)
- Consider using different method internally vs externally (verify address management tools! Talk to your vendors!)

Advanced Features

- More complex address architecture, multiple address/interface design – allows for new security models
- Higher scalability, less limitations such as broadcast domains allows for new designs in the datacenter and cloud space
- Take the time to envision new architectures consider valueing service-based design over topology-based design


Service-based vs topology-based Design

Subnet Space				
40 38 34 35 34	48 46 44 42 41	56 52 52 50 50	64 63 61 60 59 58 58	
00	00	00	00	
00000000	00000000	00000000	00000000	
ff	ff	ff	ff	
11111111	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	

Use the green and red bits to differentiate services or locations/regions

Service-based vs topology-based Design

1 Nibble = 4 bits

 $2^4 = 16$ Options, $2^{12} = 4096$ Options, $2^8 = 256$ Options

Green: 16 Service Types Red: 16 Applications Purple: 16 Superregions White: 4096 Locations Yellow: 256 Subnets per location

What it takes

- Get really familiar with the architecture of IPv6 and the address architecture
 - Get thorough education
 - Build labs and play with it
- Test different scenarios, address allocation possibilities (SLAAC, DHCPv6, IPAM tools)
- Create a first draft of your address plan and plan for several reviews
- Plan for new types of services (sensorbased technologies, networked car, health care, infusion pumps)

Reviews

- Create different scenarios
- Discuss them with all groups involved (Wireless group, Datacenter and Cloud guys, Security.....)
- Re-evaluate your drafts, converge them using all the feedbacks, create alternate scenario if necessary
- And redo the discussion process with all involved groups
- Consider using external consultants to either work on the drafts or review your final version before going production.

What does it cost?

- Time and ressources
 - Education, labs
 - Discussions and workshops
 - Consultants/Reviews

What does it save?

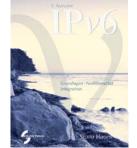
The cost of a bad address plan:

- Unneccesary operational cost (yearly returning)
 - Inconsistent or too complex address plan creates sources for errors
 - Security risk and performance loss because of complicated ACLs due to bad address structure
 - Unneccesary administrative overhead for management of overly complex address structure
- Or, your most expensive option, you may have to redesign your address architecture (guess what, this has happened to some) ;-

General recommendations

- Minimize the number of prefix lengths categories (/48, /56)
- Reserve space for infrastructure (separate prefix range)
- Structure at nibble boundaries if possible
- Prioritize bit usage around design principles
- Aggregate as much as possible
- Don't use easy to discover and sequential IIDs
- Define addressing rules for all scopes
- Evaluate address management tools based on the demands of the addressing schema developed (make your vendors become creative with clear requirments!)

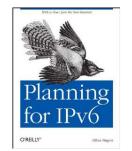
References and further reading


- RFC 4291, "IPv6 Addressing Architecture"
- "Preparing an IPv6 Addressing Plan", by Sander Steffann, RIPE
- "IPv6 Addressing Considerations", Cisco Systems
- RFC 5375, "IPv6 Unicast Address Assignment Considerations"
- Links on www.swissipv6council.ch/de/links/deployment-planning

Thank You For Your Attention!

IPv6 Grundlagen, Funktionalität, Integration

von Silvia Hagen, Deutsch 2. Auflage, Sunny Edition, 2009 ISBN 978-3-9522942-2-2


IPv6 Essentials

by Silvia Hagen, English 2nd Edition, O'Reilly, May 2006 ISBN 978-0-596-10058-2

Planning for IPv6

by Silvia Hagen, English O'Reilly, September 2011 ISBN 978-1-4493-0539-0 eBook 978-1-4493-0538-3

